
NAG C Library Function Document

nag_ztgevc (f08yxc)

1 Purpose

nag_ztgevc (f08yxc) computes some or all of the right and/or left generalized eigenvectors of a pair of
complex upper triangular matrices ðA;BÞ.

2 Specification

void nag_ztgevc (Nag_OrderType order, Nag_SideType side, Nag_HowManyType how_many,
const Boolean select[], Integer n, const Complex a[], Integer pda,
const Complex b[], Integer pdb, Complex vl[], Integer pdvl, Complex vr[],
Integer pdvr, Integer mm, Integer *m, NagError *fail)

3 Description

nag_ztgevc (f08yxc) computes some or all of the right and/or left generalized eigenvectors of the matrix
pair ðA;BÞ which is assumed to be in upper triangular form. If the matrix pair ðA;BÞ is not upper
triangular then the function nag_zhgeqz (f08xsc) should be called before invoking nag_ztgevc (f08yxc).

The right generalized eigenvector x and the left generalized eigenvector y of ðA;BÞ corresponding to a
generalized eigenvalue � are defined by

ðA� �BÞx ¼ 0

and

yHðA� �BÞ ¼ 0:

If a generalized eigenvalue is determined as 0=0, which is due to zero diagonal elements at the same
locations in both A and B, a unit vector is returned as the corresponding eigenvector.

Note that the generalized eigenvalues are computed using nag_zhgeqz (f08xsc) but nag_ztgevc (f08yxc)
does not explicitly require the generalized eigenvalues to compute eigenvectors. The ordering of the
eigenvectors is based on the ordering of the eigenvalues as computed by nag_ztgevc (f08yxc).

If all eigenvectors are requested, the function may either return the matrices X and/or Y of right or left
eigenvectors of ðA;BÞ, or the products ZX and/or QY , where Z and Q are two matrices supplied by the
user. Usually, Q and Z are chosen as the unitary matrices returned by nag_zhgeqz (f08xsc). Equivalently,
Q and Z are the left and right Schur vectors of the matrix pair supplied to nag_zhgeqz (f08xsc). In that
case, QY and ZX are the left and right generalized eigenvectors, respectively, of the matrix pair supplied
to nag_zhgeqz (f08xsc).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.

Anal. 10 241–256

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08yxc

[NP3645/7] f08yxc.1

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: side – Nag_SideType Input

On entry: specifies the required sets of generalized eigenvectors:

if side ¼ Nag RightSide, only right eigenvectors are computed;

if side ¼ Nag LeftSide, only left eigenvectors are computed;

if side ¼ Nag BothSides, both left and right eigenvectors are computed.

Constraint: side ¼ Nag BothSides, Nag LeftSide or Nag RightSide.

3: how_many – Nag_HowManyType Input

On entry: specifies further details of the required generalized eigenvectors:

if how many ¼ Nag ComputeAll, all right and/or left eigenvectors are computed;

if how many ¼ Nag BackTransform, all right and/or left eigenvectors are computed; they
are backtransformed using the input matrices supplied in arrays vr and/or vl;

if how many ¼ Nag ComputeSelected, selected right and/or left eigenvectors, defined by
the array select, are computed.

Constraint: how many ¼ Nag ComputeAll, Nag BackTransform or Nag ComputeSelected.

4: select½dim� – const Boolean Input

Note: the dimension, dim, of the array select must be at least maxð1;nÞ when
how many ¼ Nag ComputeSelected and at least 1 otherwise.

On entry: specifies the eigenvectors to be computed if how many ¼ Nag ComputeSelected. To
select the generalized eigenvector corresponding to the jth generalized eigenvalue, the jth element
of select should be set to TRUE.

Constraint: select½j� ¼ TRUE or FALSE for j ¼ 0; 1; . . . ; n� 1.

5: n – Integer Input

On entry: n, the order of the matrices A and B.

Constraint: n � 0.

6: a½dim� – const Complex Input

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the matrix A must be in upper triangular form. Usually, this is the matrix A returned by
nag_zhgeqz (f08xsc).

7: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � maxð1; nÞ.

f08yxc NAG C Library Manual

f08yxc.2 [NP3645/7]

8: b½dim� – const Complex Input

Note: the dimension, dim, of the array b must be at least maxð1; pdb� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix B is stored in b½ðj� 1Þ � pdbþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix B is stored in b½ði� 1Þ � pdbþ j� 1�.
On entry: the matrix B must be in upper triangular form with non-negative real diagonal elements.
Usually, this is the matrix B returned by nag_zhgeqz (f08xsc)

9: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb � maxð1; nÞ.

10: vl½dim� – Complex Input/Output

Note: the dimension, dim, of the array vl must be at least

maxð1; pdvl�mmÞ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag ColMajor;

maxð1; pdvl� nÞ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag RowMajor;

1 when side ¼ Nag RightSide.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in vl½ðj� 1Þ � pdvlþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in vl½ði� 1Þ � pdvlþ j� 1�.
On entry: if how many ¼ Nag BackTransform and side ¼ Nag LeftSide or Nag BothSides, vl
must be initialised to an n by n matrix Q. Usually, this is the unitary matrix Q of left Schur vectors
returned by nag_zhgeqz (f08xsc).

On exit: if side ¼ Nag LeftSide or Nag BothSides, vl contains:

if how many ¼ Nag ComputeAll, the matrix Y of left eigenvectors of ðA;BÞ;
if how many ¼ Nag BackTransform, the matrix QY ;

if how many ¼ Nag ComputeSelected, the left eigenvectors of ðA;BÞ specified by select,
stored consecutively in the rows or columns (depending on the value of order) of the array
vl, in the same order as their corresponding eigenvalues.

11: pdvl – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vl.

Constraints:

if order ¼ Nag ColMajor,
if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1; nÞ;
if side ¼ Nag RightSide, pdvl � 1;

if order ¼ Nag RowMajor,
if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1;mmÞ;
if side ¼ Nag RightSide, pdvl � 1.

12: vr½dim� – Complex Input/Output

Note: the dimension, dim, of the array vr must be at least

maxð1; pdvr�mmÞ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag ColMajor;

maxð1; pdvr� nÞ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag RowMajor;

1 when side ¼ Nag LeftSide.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08yxc

[NP3645/7] f08yxc.3

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in vr½ðj� 1Þ � pdvrþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in vr½ði� 1Þ � pdvrþ j� 1�.
On entry: if how many ¼ Nag BackTransform and side ¼ Nag RightSide or Nag BothSides, vr
must be initialised to an n by n matrix Z. Usually, this is the unitary matrix Z of right Schur
vectors returned by nag_dhgeqz (f08xec).

On exit: if side ¼ Nag RightSide or Nag BothSides, vr contains:

if how many ¼ Nag ComputeAll, the matrix X of right eigenvectors of ðA;BÞ;
if how many ¼ Nag BackTransform, the matrix ZX;

if how many ¼ Nag ComputeSelected, the right eigenvectors of ðA;BÞ specified by select,
stored consecutively in the rows or columns (depending on the value of order) of the array
vr, in the same order as their corresponding eigenvalues.

13: pdvr – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vr.

Constraints:

if order ¼ Nag ColMajor,
if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1; nÞ;
if side ¼ Nag LeftSide, pdvr � 1;

if order ¼ Nag RowMajor,
if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1;mmÞ;
if side ¼ Nag LeftSide, pdvr � 1.

14: mm – Integer Input

On entry: the number of columns in the arrays vl and/or vr.

Constraints:

if how many ¼ Nag ComputeAll or Nag BackTransform, mm � n;
if how many ¼ Nag ComputeSelected, mm must not be less than the number of requested
eigenvectors.

15: m – Integer * Output

On exit: the number of columns in the arrays vl and/or vr actually used to store the eigenvectors. If
how many ¼ Nag ComputeAll or Nag BackTransform, m is set to n. Each selected eigenvector
occupies one column.

16: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdvl ¼ hvaluei.
Constraint: pdvl > 0.

f08yxc NAG C Library Manual

f08yxc.4 [NP3645/7]

On entry, pdvr ¼ hvaluei.
Constraint: pdvr > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.
On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � maxð1; nÞ.

NE_ENUM_INT_2

On entry, side ¼ hvaluei, n ¼ hvaluei, pdvl ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1; nÞ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ hvaluei, n ¼ hvaluei, pdvr ¼ hvaluei.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1; nÞ;
if side ¼ Nag LeftSide, pdvr � 1.

On entry, how many ¼ hvaluei, n ¼ hvaluei, mm ¼ hvaluei.
Constraint: if how many ¼ Nag ComputeAll or Nag BackTransform, mm � n;
if how many ¼ Nag ComputeSelected, mm must not be less than the number of requested
eigenvectors.

On entry, side ¼ hvaluei, mm ¼ hvaluei, pdvl ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1;mmÞ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ hvaluei, mm ¼ hvaluei, pdvr ¼ hvaluei.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1;mmÞ;
if side ¼ Nag LeftSide, pdvr � 1.

NE_CONSTRAINT

General constraint: select½j� ¼ TRUE or FALSE for j ¼ 0; . . . ; n� 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

It is beyond the scope of this manual to summarize the accuracy of the solution of the generalized
eigenvalue problem. Interested readers should consult section 4.11 of the LAPACK Users’ Guide
(Anderson et al. (1999)) and Chapter 6 of Stewart and Sun (1990).

8 Further Comments

nag_ztgevc (f08yxc) is the sixth step in the solution of the complex generalized eigenvalue problem and is
usually called after nag_zhgeqz (f08xsc).

The real analogue of this function is nag_dtgevc (f08ykc).

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08yxc

[NP3645/7] f08yxc.5

9 Example

The example program computes the � and � parameters, which defines the generalized eigenvalues and the
corresponding left and right eigenvectors, of the matrix pair ðA;BÞ given by

A ¼

1:0þ 3:0i 1:0þ 4:0i 1:0þ 5:0i 1:0þ 6:0i
2:0þ 2:0i 4:0þ 3:0i 8:0þ 4:0i 16:0þ 5:0i
3:0þ 1:0i 9:0þ 2:0i 27:0þ 3:0i 81:0þ 4:0i
4:0þ 0:0i 16:0þ 1:0i 64:0þ 2:0i 256:0þ 3:0i

1
CCA

0
BB@

B ¼

1:0þ 0:0i 2:0þ 1:0i 3:0þ 2:0i 4:0þ 3:0i
1:0þ 1:0i 4:0þ 2:0i 9:0þ 3:0i 16:0þ 4:0i
1:0þ 2:0i 8:0þ 3:0i 27:0þ 4:0i 64:0þ 5:0i
1:0þ 3:0i 16:0þ 4:0i 81:0þ 5:0i 256:0þ 6:0i

1
CCA

0
BB@ :

To compute generalized eigenvalues, it is required to call five functions: nag_zggbal (f08wvc) to balance
the matrix, nag_zgeqrf (f08asc) to perform the QR factorization on B, nag_zunmqr (f08auc) to apply Q to
A, nag_zgghrd (f08wsc) to reduce the matrix pair to the generalized Hessenberg form and nag_zhgeqz
(f08xsc) to compute the eigenvalues via the QZ algorithm.

The computation of generalized eigenvectors is done by calling nag_ztgevc (f08yxc) to compute the
eigenvectors of the balanced matrix pair. The function nag_zggbak (f08wwc) is called to backward
transform the eigenvectors to the user-supplied matrix pair. If both left and right eigenvectors are required
then nag_zggbak (f08wwc) must be called twice.

9.1 Program Text

/* nag_ztgevc (f08yxc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, icols, ihi, ilo, irows, j, m, n,pda, pdb, pdq, pdz;
Integer alpha_len, beta_len, scale_len, tau_len, select_len;
Integer exit_status=0;
Complex e;
Boolean ileft, iright;

NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *alpha=0, *b=0, *beta=0, *q=0, *tau=0, *z=0;
double *lscale=0, *rscale=0;
Boolean *select=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define Q(I,J) q[(J-1)*pdq + I - 1]
#define Z(I,J) z[(J-1)*pdz + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define Q(I,J) q[(I-1)*pdq + J - 1]

f08yxc NAG C Library Manual

f08yxc.6 [NP3645/7]

#define Z(I,J) z[(I-1)*pdz + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf("f08yxc Example Program Results\n\n");

/* ILEFT is TRUE if left eigenvectors are required */
/* IRIGHT is TRUE if right eigenvectors are required */
ileft = TRUE;
iright = TRUE;

/* Skip heading in data file */
Vscanf("%*[^\n] ");

Vscanf("%ld%*[^\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdb = n;
pdq = n;
pdz = n;

#else
pda = n;
pdb = n;
pdq = n;
pdz = n;

#endif
alpha_len = n;
beta_len = n;
scale_len = n;
tau_len = n;
select_len = n;

/* Allocate memory */
if (

!(a = NAG_ALLOC(n * n, Complex)) ||
!(alpha = NAG_ALLOC(alpha_len, Complex)) ||
!(b = NAG_ALLOC(n * n, Complex)) ||
!(beta = NAG_ALLOC(beta_len, Complex)) ||
!(lscale = NAG_ALLOC(scale_len, double)) ||
!(rscale = NAG_ALLOC(scale_len, double)) ||
!(q = NAG_ALLOC(n * n, Complex)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) ||
!(z = NAG_ALLOC(n * n, Complex)) ||
!(select = NAG_ALLOC(select_len, Boolean)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* READ matrix A from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");

/* READ matrix B from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
}

Vscanf("%*[^\n] ");

/* Balance matrix pair (A,B) */
f08wvc(order, Nag_DoBoth, n, a, pda, b, pdb, &ilo, &ihi, lscale,

rscale, &fail);
if (fail.code != NE_NOERROR)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08yxc

[NP3645/7] f08yxc.7

{
Vprintf("Error from f08wvc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Matrix A after balancing */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,

Nag_BracketForm, "%7.4f", "Matrix A after balancing",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Matrix B after balancing */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,

Nag_BracketForm, "%7.4f", "Matrix B after balancing",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");

/* Reduce B to triangular form using QR */
irows = ihi + 1 - ilo;
icols = n + 1 - ilo;
f08asc(order, irows, icols, &B(ilo, ilo), pdb, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08asc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Apply the orthogonal transformation to matrix A */
f08auc(order, Nag_LeftSide, Nag_ConjTrans, irows, icols, irows,

&B(ilo, ilo), pdb, tau, &A(ilo, ilo), pda, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08auc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Initialize Q (if left eigenvectors are required) */
if (ileft)

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

{
Q(i,j).re = 0.0;
Q(i,j).im = 0.0;

}
Q(i,i).re = 1.0;

}
for (i = ilo+1; i <= ilo+irows-1; ++i)

{
for (j = ilo; j <= MIN(i,ilo+irows-2); ++j)

{
Q(i,j).re = B(i,j).re;
Q(i,j).im = B(i,j).im;

}
}

f08atc(order, irows, irows, irows, &Q(ilo, ilo), pdq, tau,
&fail);

f08yxc NAG C Library Manual

f08yxc.8 [NP3645/7]

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f08atc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

/* Initialize Z (if right eigenvectors are required) */
if (iright)

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

{
Z(i,j).re = 0.0;
Z(i,j).im = 0.0;

}
Z(i,i).re = 1.0;

}
}

/* Compute the generalized Hessenberg form of (A,B) */
f08wsc(order, Nag_UpdateSchur, Nag_UpdateZ, n, ilo, ihi, a, pda,

b, pdb, q, pdq, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08wsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Matrix A in generalized Hessenberg form */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,

Nag_BracketForm, "%7.3f", "Matrix A in Hessenberg form",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");

/* Matrix B in generalized Hessenberg form */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,

Nag_BracketForm, "%7.3f", "Matrix B in Hessenberg form",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute the generalized Schur form */
/* The Schur form also gives parameters */
/* required to compute generalized eigenvalues */
f08xsc(order, Nag_Schur, Nag_AccumulateQ, Nag_AccumulateZ, n, ilo, ihi, a,

pda, b, pdb, alpha, beta, q, pdq, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08xsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the generalized eigenvalue parameters */
Vprintf("\n Generalized eigenvalues\n");
for (i = 1; i <= n; ++i)

{

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08yxc

[NP3645/7] f08yxc.9

if (beta[i-1].re != 0.0 || beta[i-1].im != 0.0)
{

e = a02cdc(alpha[i - 1], beta[i - 1]);
Vprintf(" %4ld (%7.3f,%7.3f)\n", i, e.re, e.im);

}
else

Vprintf(" %4ldEigenvalue is infinite\n", i);
}

Vprintf("\n");

/* Compute left and right generalized eigenvectors */
/* of the balanced matrix */
f08yxc(order, Nag_BothSides, Nag_BackTransform, select, n, a, pda,

b, pdb, q, pdq, z, pdz, n, &m, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08yxc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
if (iright)

{

/* Compute right eigenvectors of the original matrix */
f08wwc(order, Nag_DoBoth, Nag_RightSide, n, ilo, ihi, lscale,

rscale, n, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08wwc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the right eigenvectors */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, z, pdz,

Nag_BracketForm, "%7.4f", "Right eigenvectors",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");

}

/* Compute left eigenvectors of the original matrix */
if (ileft)

{
f08wwc(order, Nag_DoBoth, Nag_LeftSide, n, ilo, ihi, lscale,

rscale, n, q, pdq, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08wwc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the left eigenvectors */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, q, pdq,

Nag_BracketForm, "%7.4f", "Left eigenvectors",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

END:
if (a) NAG_FREE(a);

f08yxc NAG C Library Manual

f08yxc.10 [NP3645/7]

if (alpha) NAG_FREE(alpha);
if (b) NAG_FREE(b);
if (beta) NAG_FREE(beta);
if (lscale) NAG_FREE(lscale);
if (q) NAG_FREE(q);
if (rscale) NAG_FREE(rscale);
if (tau) NAG_FREE(tau);
if (z) NAG_FREE(z);
if (select) NAG_FREE(select);

return exit_status;
}

9.2 Program Data

f08yxc Example Program Data
4 :Value of N

(1.00, 3.00) (1.00, 4.00) (1.00, 5.00) (1.00, 6.00)
(2.00, 2.00) (4.00, 3.00) (8.00, 4.00) (16.00, 5.00)
(3.00, 1.00) (9.00, 2.00) (27.00, 3.00) (81.00, 4.00)
(4.00, 0.00) (16.00, 1.00) (64.00, 2.00) (256.00, 3.00) :End of matrix A
(1.00, 0.00) (2.00, 1.00) (3.00, 2.00) (4.00, 3.00)
(1.00, 1.00) (4.00, 2.00) (9.00, 3.00) (16.00, 4.00)
(1.00, 2.00) (8.00, 3.00) (27.00, 4.00) (64.00, 5.00)
(1.00, 3.00) (16.00, 4.00) (81.00, 5.00) (256.00, 6.00) :End of matrix B

9.3 Program Results

f08yxc Example Program Results

Matrix A after balancing
1 2 3 4

1 (1.0000, 3.0000) (1.0000, 4.0000) (0.1000, 0.5000) (0.1000, 0.6000)
2 (2.0000, 2.0000) (4.0000, 3.0000) (0.8000, 0.4000) (1.6000, 0.5000)
3 (0.3000, 0.1000) (0.9000, 0.2000) (0.2700, 0.0300) (0.8100, 0.0400)
4 (0.4000, 0.0000) (1.6000, 0.1000) (0.6400, 0.0200) (2.5600, 0.0300)
Matrix B after balancing

1 2 3 4
1 (1.0000, 0.0000) (2.0000, 1.0000) (0.3000, 0.2000) (0.4000, 0.3000)
2 (1.0000, 1.0000) (4.0000, 2.0000) (0.9000, 0.3000) (1.6000, 0.4000)
3 (0.1000, 0.2000) (0.8000, 0.3000) (0.2700, 0.0400) (0.6400, 0.0500)
4 (0.1000, 0.3000) (1.6000, 0.4000) (0.8100, 0.0500) (2.5600, 0.0600)

Matrix A in Hessenberg form
1 2 3 4

1 (-2.868, -1.595) (-0.809, -0.328) (-4.900, -0.987) (-0.048, 1.163)
2 (-2.672, 0.595) (-0.790, 0.049) (-4.955, -0.163) (-0.439, -0.574)
3 (0.000, 0.000) (-0.098, -0.011) (-1.168, -0.137) (-1.756, -0.205)
4 (0.000, 0.000) (0.000, 0.000) (0.087, 0.004) (0.032, 0.001)

Matrix B in Hessenberg form
1 2 3 4

1 (-1.775, 0.000) (-0.721, 0.043) (-5.021, 1.190) (-0.145, 0.726)
2 (0.000, 0.000) (-0.218, 0.035) (-2.541, -0.146) (-0.823, -0.418)
3 (0.000, 0.000) (0.000, 0.000) (-1.396, -0.163) (-1.747, -0.204)
4 (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (-0.100, -0.004)

Generalized eigenvalues
1 (-0.635, 1.653)
2 (0.493, 0.910)
3 (0.674, -0.050)
4 (0.458, -0.843)

Right eigenvectors
1 2 3 4

1 (0.0870,-0.1955) (0.0550, 0.0318) (-0.5392,-0.2697) (0.0467,-0.0597)
2 (-0.1298, 0.1446) (-0.1060,-0.0705) (0.6027, 0.1760) (-0.0801, 0.0956)
3 (0.0480,-0.0520) (0.0639, 0.0361) (-0.0726,-0.0274) (0.0562,-0.0438)
4 (-0.0069, 0.0091) (-0.0139,-0.0030) (-0.0042,-0.0007) (-0.0129, 0.0042)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08yxc

[NP3645/7] f08yxc.11

Left eigenvectors
1 2 3 4

1 (-0.2725,-0.1776) (0.0474, 0.0490) (-0.1146,-0.1935) (0.0765,-0.0082)
2 (0.2762, 0.0441) (-0.1435,-0.0529) (0.3578, 0.2103) (-0.1643, 0.0183)
3 (-0.0954,-0.0046) (0.0864, 0.0136) (-0.0677,-0.0323) (0.0952,-0.0048)
4 (0.0128,-0.0019) (-0.0164, 0.0031) (0.0094, 0.0034) (-0.0179,-0.0045)

f08yxc NAG C Library Manual

f08yxc.12 (last) [NP3645/7]

	f08yxc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	how_many
	select
	n
	a
	pda
	b
	pdb
	vl
	pdvl
	vr
	pdvr
	mm
	m
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_CONSTRAINT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

